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Problem Statement 

• Investigate the use of wired short cuts in sensor networks 

– Can a few wired short cuts improve the energy efficiency? 

– How can the short cuts extend network lifetime? 

– Can the short cuts change the fundamental limits of sensor networks? 

 

•  Energy efficiency achieved by reducing the path length  
•  Develop a simple analytical model to quantify the gain 

to be achieved 
•  Conduct Simulations to: 

•Validate the results  
•Vary the assumption of the simple model 

Approach 
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Context of Wired-Wireless Sensor Networks 
• Classes of sensor network applications include 

– habitat monitoring, environmental measurements, etc. 

• Some challenges of deployment and operation 

– Limited network lifetime due to unattended operation by 
power constrained devices 

– Uneven energy consumption due to data collection 

– Uneven distribution of sensor nodes due to rugged terrain 

• Potential Solutions 
– Energy efficient routing protocols  

– Mobility of sink or sensors  

• base station repositioning 

• using mobility to improve capacity 

• Using mobility on a rugged terrain requires complex robotics 
which can be equally (or more) challenging !! 
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Wired-Wireless Sensor Networks:  

A New Paradigm 

• In some scenarios it may be possible to instrument parts 
of the sensed field with cable-ways/wires (e.g., forests) 
– where the duration of deployment is long enough to make it 

feasible and practical 

• Wires may be used for 

– Communication and data transmission 

– Support of simple robotics 

– Replenishing and deployment of new sensors 

• But ... 

– How many wires should be installed and in what fashion? 

– What is the impact of those wires on the network performance? 
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The Small World Model 

• In relational graphs:  
– It has been observed that by adding only few random links, 

average path length can be reduced drastically [Watts ‘98] 

• In spatial graphs (e.g. wireless networks): 
– It has been shown that by adding limited length short cuts the 

average path length is reduced drastically [Helmy ‘03] 

• The Small world model has been used to develop logical 
contacts to help in efficient resource discovery        
[Helmy ‘02, ‘03] 

 

• Here we exploit the use of wires as physical contacts 
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Regular Graph 
- High path length 

- High clustering 

Random Graph 

 - Low path length,  

 - Low clustering 

Small World Graph: Low path length, High clustering 

- In Small Worlds, a few short cuts contract the diameter (i.e., path length) of a regular graph to  

resemble diameter of a random graph without affecting the graph structure (i.e., clustering) 
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System Model: Assumptions & Limitations 

• Network Model 

– Disk shaped topology 

– Sensor network with single sink, placed anywhere in the network 

– Uniformly distributed nodes, uniform traffic to/from the sink 

• Wire Model 

– Wires are of equal length 

– One end of each wire is one hop from the sink  

– Other ends of the wires are equidistant on an arc centered at the sink 

• Routing Model 

– Geographic based routing 

– Modified greedy geographic routing 

• Forwarding based on geographic location of neighbors and destination 

• Decision of whether or not to use the a wire is based on distance to the 

destination through the known wires 
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Greedy Geographic Routing 
• A node knows its location and the locations of its neighbors 

• A node x sending a packet to node D (the destination) would 

need to know D’s location 

• The destination’s location is included in the packet header 

• Forwarding decision is taken based on local information  

• Next hop is chosen to get packet closest to destination 

x D 

y 
Destination (D) 

Source (x) 
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Modified Greedy Geographic Routing 
• Node x sending a packet to node D knows locations of wire1 

(A1,B1) and wire2 (A2,B2) 

• Let d(a,b) be the Euclidean distance between a and b 

• x calculates min(d(x,Ai)+d(Bi,D) i, d(x,D)) and 

decides the shortest Euclidean path accordingly 

x D 

y 

A1 
B1 

A2 
B2 

wire1 

wire2 
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System Model (contd.) 

• Two information models considered 

– 1) Nodes have information of all the wires 

– 2) Each wired node propagates its reachability to k hops 

• Energy efficiency obtained by reducing the average path length 

• Evaluation Metric: 

– Let ℓ(0) be the average path length (in hops) when no wires are used 

– Let ℓ(i) be the average path length when wires of length i are used 

– Define the Path Length Ratio PLR(i)  

• PLR(i) = ℓ(i)/ℓ(0)  
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Ring hop x Ring area = i.Ai 
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Analytical Model: No wires 
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Wire of length L hops 

R 

Analytical Model: With Wires 

All nodes in grey area can reach wire end in 1 hop. Nodes have information of all wires.  

Infinite number of wires. 
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Analytical Results 
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Path length ratio obtained for the analytical model 

• The path length ratio (PLR) decreases rapidly with increase in the 
wire length up to a point, after which the path length increases  
– Path length ratio reaches 0.5 for wire length of 0.4R 

– For sink placed at edge: we get minimum PLR for wire length of  R 

– For sink placed at center: we get  min PLR for wire length of 0.75 R 
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Simulation Setup and Experiments 

• Simulation Parameters 

– Nodes N=1000, uniformly distributed  

– Radius R=1000m 

– radio range r =55m 

• Dimensions investigated 

– Varying the number of wires 

– Varying the length of the wires 

– Varying the position of the sink 

– Limiting the information about wires locations to nodes k hops 

from the wire end 
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Simulation Results: Number of Wires 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
Wire Length (i) [meters]

P
a
th

 L
e
n

g
th

 R
a
ti

o 2

3

6

8

12

24

48

Theoretical

Path length ratio with Varying number of wires 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

Wire length (i) [meters]

P
a
th

 L
e
n

g
th

 R
a
ti

o

1

3

5

7

11

Theoretical

Path length ratio with Varying number of wires 

Sink at Center Sink at Edge 

Sink at Center: 
  - Gain Saturation at 24 wires  
  - Max gain (PLR~30%) is obtained at 0.75 R wire 

length 
  - 6 wires give PLR ~ 40% by having wires of 

0.75 R in length 

Sink at Edge: 
  - Gain Saturation at 5 wires  
  - Maximum gain (PLR~40%) is 

obtained at ~R wire length 

Adding 5-6 wires can provide up to 60% reduction in average path length 
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S: sink, A-B is the wire of length ℓ, Nodes in shaded region know about the wire A-B.  

Node x uses wireless to reach S. Node y sends packet to z that knows about the wire.  

The packet is then forwarded to A and over the wire to B then to S 

Routing decision when wire information 

is restricted to k hops from the wire 
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Simulation Results: Wire Information  
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Effect of limiting the wire information to k hops.  

k is varied from 1-6 (with 24 wires) 
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Effect of restricting wire information to k hops.  

k is varied from 1-6 (with 5 wires) 

Sink at Center Sink at Edge 

k=3hops gives same performance as  

complete knowledge 
k=2hops gives min PLR ~45% 

Restricting the wire knowledge to 2-3 hops of the ends of the wire 

gives very good performance 
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Conclusions 

• Introduced a new paradigm of wired-wireless sensor networks 

• Developed routing and analytical models for the new paradigm 

• Performed extensive simulations to study the new scheme using 
small worlds to help understand how to allocate wired resources 
– There is an optimal wire length for which the path length ratio is at its 

minimum, beyond which it increases 

– Adding 5-6 wires with 0.75R - R in length results in reduction of ~60% in 
average path length 

– Restricting wire information to 2-3 hops does not result in deterioration 
of performance 

• This paradigm promises to decrease average path length drastically 

• Does this scheme lead to better energy balance, network lifetime 
and fundamental limits? 
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On-going Work and Future Directions 

• Energy Balancing and Lifetime of Sensor Networks 

• Robots on wires 

– Controlled mobility for balanced communication/energy 

– Uncontrolled predictable scheduled mobility 

– Uncontrolled task-based mobility 

• Uneven node and wire distribution 

• Fundamental Limits 

– Can wires change the scaling and asymptotic limits of 

throughput and network lifetime of sensor networks? 

 


